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We studied how lateral connections affect the accuracy of a population code by using a model of orientation
selectivity in the primary visual cortex. Investigating the effects of lateral connections on population coding is
a complex problem because these connections simultaneously change the shape of tuning curves and correla-
tions between neurons. Both of these changes caused by lateral connections have to be taken into consideration
to correctly evaluate their effects. We propose a theoretical framework for analytically computing the Fisher
information, which measures the accuracy of a population code, in stochastic spiking neuron models with
refractory periods. Within our framework, we accurately evaluated both the changes in tuning curves and
correlations caused by lateral connections and their effects on the Fisher information. We found that their
effects conflicted with each other and the answer to whether or not the lateral connections increased the Fisher
information strongly depended on the intrinsic properties of the model neuron. By systematically changing the
coupling strengths of excitations and inhibitions, we found the parameter regions of lateral connectivities
where sharpening of tuning curves through Mexican-hat connectivities led to an increase in information, which
is in contrast to some previous findings.
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I. INTRODUCTION

Information from the external and internal worlds is en-
coded in the noisy population activities of neurons in the
brain. Understanding how this information is accurately pro-
cessed is a central problem in neuroscience. The role of lat-
eral connections for accurate information processing is of
special interest. However, there is as yet no rigorous treat-
ment of how lateral connections affect the accuracy of a
population code. Because lateral connections change not
only the tuning curve of each neuron but also the correlation
between neuronal activities, we need to take both effects into
consideration. Although the effects of changing the tuning
curve and the neural correlations have been separately exam-
ined in previous studies �1–4�, little light has been shed on
the effect of both changes together �5,6�. In this paper, we
describe a theoretical framework for evaluating the effects of
lateral connections on the accuracy of a population code tak-
ing both effects into consideration. We apply the theoretical
framework to a model of orientation selectivity in the pri-
mary visual cortex and discuss how lateral connections affect
the accuracy of population coding.

We use the Fisher information to evaluate the accuracy of
a population code �1,2,7�. The Fisher information quantifies
the maximal amount of information about stimuli that can be
extracted from noisy neural activities. We aim to analytically
compute the Fisher information in a network model of spik-
ing neurons by taking into consideration both changes in
tuning curves and neural correlation caused by changes in
lateral connections. Assuming that the fluctuations of mean
firing rates obey a Gaussian distribution, we can analytically

compute the Fisher information if we can compute the mean
firing rates and covariance matrix of the Gaussian distribu-
tion. However, it is generally difficult to compute the corre-
lations in a realistic spiking neuron model analytically. For
this reason, the previous studies have resorted to numerical
methods of computing the Fisher information �5,6�.

To overcome the difficulty with computing correlations,
we used the spike response model introduced by Gerstner
and van Hemmen �8�, where correlations can be analytically
computed within the framework of mean-field theory �9,10�.
The spike response model is not only analytically tractable
but can also be made realistic by tuning the model param-
eters �8,11�. Our approach provides a powerful way of study-
ing the effects of lateral connections on the accuracy of a
population code within a realistic network model of spiking
neurons.

We chose an orientation selectivity model in which short-
range excitations together with longer-range inhibitions pro-
duce a Mexican-hat interaction �5,6,12,13� as a model circuit
for investigating the effects of lateral connections. It has pre-
viously been reported that sharpening of tuning curves
through a Mexican-hat interaction greatly reduces the accu-
racy of population coding in terms of the Fisher information
due to the adverse effects of correlations that it induces �5,6�.
However, because the authors relied on numerical methods
of computing the Fisher information, their work seemed to
lack an extensive search for parameters because of the sub-
stantial amount of time it takes to compute the Fisher infor-
mation numerically. By systematically changing the
strengths of recurrent excitations and lateral inhibitions, we
found parameter regions where the sharpening of tuning
curves via Mexican-hat interactions actually improved the
accuracy of a population code, which is in contrast to the
previous findings.*okada@k.u-tokyo.ac.jp
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II. MODEL

Let us consider a discrete time version of a spike response
model with threshold noise �10,14�. The network consists of
N neurons, which take two states, denoted by S=0,1. S=0
means that the neuron does not fire and S=1 means that the
neuron fires. The states of every neuron Si are stochastically
updated in parallel. The probability that Si takes the 0 or 1
state depends on the membrane potential, ui

P�Si�t� = 1� = g�ui�t�� ,

P�Si�t� = 0� = 1 − P�Si�t� = 1� , �1�

where g is called “the escape function” �8�, which is mono-
tonically increasing and is a differentiable function taking
values between 0 and 1. The membrane potential ui is deter-
mined by the past spike histories of N neurons,

ui�t� = �
�=1

�

�
j�i

Jij�ij���Sj�t − �� + �i�t − ti
�f�� + hi + ur, �2�

where �ij��� describes the time course of a postsynaptic po-
tential evoked by the firing of presynaptic neurons and �i���
represents the effect of refractoriness. The refractory func-
tion, �i, only depends on the last spike of neuron i. ti

�f� de-
notes the time when the last spike of neuron i occurred. ����
and ���� are called the response kernels. hi is an input po-
tential, and ur is the resting potential.

The advantage of the spike response model is that it is
analytically tractable thanks to the linearity of the model.
The correlation functions can be analytically computed in the
spike response model within the framework of mean-field
theory �9,10�. In addition to analytical tractability, we can
make the spike response model realistic by choosing appro-
priate response kernels. For instance, the spike response
model, according to reports, can accurately predict the tim-
ings of spikes generated with the Hodgkin-Huxley-type
equation �11�.

In this paper, we consider absolute refractoriness for the
sake of simplicity. That is, the refractory function ���� is
given by

���� = �− � for 1 � � � �abs

0 for � � �abs,
� �3�

where �abs is the absolute refractory period. We derive a set
of closed equations for correlation functions in the spike re-
sponse model with absolute refractoriness.

III. THEORY OF CORRELATIONS

A. Instantaneous firing rate

First, let us consider the noise averages of neuronal state
variables denoted by �Si�t�	. We call the value, �Si�t�	, the
instantaneous firing rate at time t. The noise average of some
function f is defined as

�f�St,St−1, . . . ,S0�	


 �
St

�
St−1

¯�
S0

f�St,St−1, . . . ,S0�P�St,St−1, . . . ,S0� ,

�4�

where St= �S1�t� ,S2�t� , . . . ,SN�t�� represents the spike pattern
of N neurons at time t and �St represents the summation over
all possible configurations St. P�St ,St−1 , . . . ,S0� is the prob-
ability of finding the system in a state �St ,St−1 , . . . ,S0�. The
joint probability P�St ,St−1 , . . . ,S0� is described by the fol-
lowing master equation:

P�St,St−1, . . . ,S0�

= W�StSt−1,St−2, . . . ,S0�P�St−1,St−2, . . . ,S0� , �5�

where W�St St−1 ,St−2 , . . . ,S0� is called the transition prob-
ability, which is determined by the update rule �Eq. �1��,

W�StSt−1,St−2, . . . ,S0� = �
i=1

N
1 + �2Si�t� − 1��2g�ui�t�� − 1�

2
.

�6�

To simplify the description, the past spike histories,
�St−1 ,St−2 , . . . ,S0�, are denoted by Xt−1.

By using Eq. �5�, the instantaneous firing rate at time t,
�Si�t�	, can be computed as

�Si�t�	 = �
Xt−1

P�Xt−1��
St

SiW�StXt−1�

=�g�ui�t��	 , �7�

where �Xt−1 represents the summation over all possible con-
figurations of the past spike histories Xt−1. Here, we denote
the terms in the membrane potential ui �Eq. �2�� which ex-
clude the refractory term �i�t− ti

�f�� by ûi, that is,

ûi = �
�=1

�

�
j�i

Jij�ij���Sj�t − �� + hi + ur. �8�

We expand g�ui� around the noise average of ûi,

�Si�t�	 = �g��ûi�t�	 + �i�t − ti
�f���	 +�g���ûi�t�	 + �i�t

− ti
�f����

�=1

�

�
j�i

N

Jij�ij����Sj�t − ��� +
1

2�g���ûi�t�	

+ �i�t − ti
�f����

�=1

�

�
��=1

�

�
j�i

N

�
k�i

N

Jij�ij���Jik�ik�����Sj�t

− ���Sk�t − ���� + ¯ , �9�

where �Si=Si− �Si	, g��u�=dg�u� /du, and g�=d2g�u� /du2.
When each neuron is connected to a number of neurons of
order N and connections Jij are all of order 1 /N, cross cor-
relations ��Si�Sj	 are of order 1 /N �9�. In such a situation,
the second term and the third term in Eq. �9� are of order
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1 /N. Hence, considering the limit of N→�, one obtains to
leading order,

�Si�t�	 = �g��ûi�t�	 + �i�t − ti
�f���	 . �10�

Taking the average for the refractory function �i�t− ti
�f��,

�Si�t�	 can be computed as

�Si�t�	 = �
ti�=1

�

P�ti��g��ûi�t�	 + �i�ti���

=g��ûi�t�	� �
ti�=�abs+1

�

P�ti��

=g��ûi�t�	��1 − �
ti�=1

�abs

P�ti���
=g��ûi�t�	��1 − �

ti�=1

�abs

�Si�t − ti��	� , �11�

where ti�= t− ti
�f� and P�ti�� is the probability that the last spike

of neuron i occurred at t− ti�, i.e., P�ti��= P�Si�t− ti��=1,Si�t
− ti�+1�=0, . . . ,Si�t−1�=0�. Note that when ti���abs, P�ti��
can be simply written as P�ti��= P�Si�t− ti��=1� due to there
being an absolute refractory period. We took advantage of
this simplification in the above calculation. This property of
the absolute refractory period also significantly simplifies the
following correlation function calculations.

By taking the limit t→� in Eq. �11�, the instantaneous
firing rate in a stable stationary state is given by

�Si	 =
g��ûi	�

1 + �absg��ui	�
. �12�

Substituting Eq. �8� into Eq. �12�, we obtain self-consistent
equations of �Si	. By solving these self-consistent equations,
we can compute the instantaneous firing rates at equilibrium.

B. Equal-time correlation functions

This section discusses the values of equal-time autocorre-
lation functions and equal-time cross-correlation functions.
Autocorrelation functions are defined as

Ai�t,t + �� 
 ��Si�t��Si�t + ��	 . �13�

We denote the autocorrelation functions at equilibrium by
Ai���
 limt→� Ai�t , t+��. The equilibrium value of equal-
time autocorrelation functions Ai�0� are simply

Ai�0� = �Si	�1 − �Si	� . �14�

The cross-correlation functions are defined as

Cij�t,t + �� 
 ��Si�t��Sj�t + ��	 , �15�

where i� j. We denote the cross correlation functions at
equilibrium by Cij���
 limt→� Cij�t , t+��. We calculate the
equilibrium value of equal-time cross correlation functions
Cij�0� in this section. The equal-time cross correlation func-
tions can be written as

Cij�t,t� = �Si�t�Sj�t�	 − �Si�t�	�Sj�t�	

= �
Xt−1

P�Xt−1��
St

SiSjW�StXt−1� − �Si�t�	�Sj�t�	

=�g�ui�t��g�uj�t��	 − �g�ui�	�g�uj�	 . �16�

By expanding g�ui� around the noise average of ûi and taking
the limit t→�, we obtain the equal-time cross correlation
functions Cij�t , t� at equilibrium �see Appendix A for details�,

Cij�0� = g��ûi	�g��ûj	��
ti�=1

�abs

�
tj�=1

�abs

Cij�ti� − tj�� + g���ûi	�g��ûj	��− 1 + �abs�Si	��
tj�=1

�abs

�
�

�

� �
k�i,j

Jik�ik���Ckj�� − tj�� + Jij�ij���Aj�� − tj���
+ g���ûj	�g��ûi	��− 1 + �abs�Sj	��

ti�=1

�abs

�
�

�

� �
k�i,j

Jjk� jk���Cki�� − ti�� + Jji� ji���Ai�� − ti���
+ g���ûi	�g���ûj	��1 − �abs�Si	��1 − �abs�Sj	� ,

��
�,��

�

�
k�i

�
l�j,k

Jik�ik���Jjl� jl����Ckl�� − ��� + �
�,��

�

�
k�i

Jik�ik���Jjk� jk����Ak�� − ���� , �17�

where we have ignored three-point cross correlations such as
��Si�Sj�Sk	 and four-point cross correlations such as
��Si�Sj�Sk�Sl	 because these are of order 1 /N3/2 and 1 /N2,
respectively. These equations for the equal-time cross corre-

lations, Cij�0�, include time-delayed cross correlations,
Cij���, and time-delayed autocorrelations, Ai���. Thus, to
solve these equations, we need the equations for the time-
delayed correlation functions, Cij��� and Ai���.
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C. Time-delayed correlation functions

In this section, we derive the equations for the time-
delayed correlation functions, Cij��� and Ai���. The time-
delayed cross-correlation functions can be written as

Cij�t,t + �� = �Si�t�Sj�t + ��	 − �Si�t�	�Sj�t + ��	

= �
Xt+�−1

P�Xt+�−1�Si�t��
St+�

Sj�t + ��W�St+�Xt+�−1�

− �Si�t�	�Sj�t + ��	

=�Si�t�g�uj�t + ���	 − �g�ui�t��	�g�uj�t + ���	 �18�

=��Si�t�g�uj�t + ���	 . �19�

By expanding g�ui� around the noise average of ûi and taking
the limit t→�, the time-delayed cross correlations at equi-
librium can be written as

Cij��� = − g��ûj	��
tj�=1

�abs

Cij�� − tj�� + �1 − �abs�Sj	�g���ûj	�

	�
��

�

� �
k�j,i

Jjk� jk����Cik�� − ��� + JjiAi�� − ���� .

�20�

If we set j= i in Eq. �20�, we obtain the equations for time-
delayed autocorrelations at equilibrium,

Ai��� = − g��ûi	��
tj�=1

�abs

Ai�� − tj�� , �21�

where we have ignored the terms which are of order 1 /N
because Ai��� is of order 1. Solving Eqs. �17�, �20�, and �21�,
we eventually obtain the equilibrium value for equal-time
cross correlations Cij�0�, time-delayed cross correlations
Cij���, and time-delayed autocorrelations Ai���.

D. Correlations of mean firing rate

We calculated the correlations of spikes, ��Si�Sj	, in the
previous sections. In this section, we compute the correla-
tions of mean firing rates within a time window T, Qij
= ��ri�rj	, where �ri
ri− �ri	, because we need these to
compute the Fisher information, as will be explained in the
next section. The mean firing rate, ri, within T is defined as

ri =
1

T
�
�=1

T

Si��� . �22�

The correlations for the mean firing rates can be calculated as
�15�

Qij = ��ri�rj	

=��ri − f i��rj − f j�	

=�� 1

T
�
�=1

T

Si��� − f i�� 1

T
�
��=1

T

Si���� − f j��

=
1

T2�
�=1

T

�
��=1

T

�Si���Sj����	 − f if j

=
1

T2�
�=1

T

�
��=1

T

���Si����Sj����	 + �Si���	�Sj����	� − f if j

=
1

T2�
�=1

T

�
��=1

T

Cij��� − �� . �23�

where f i= �ri	. Thus, using spike correlations Cij���, the mean
firing rate correlations, Qij, can be computed through Eq.
�23�. Figure 8 illustrates a numerical verification of the ana-
lytical computations. The mean firing rates and correlation
functions computed from the theory match to those obtained
by simulating a network of spike response models.

IV. FISHER INFORMATION

Let us consider the problem of how accurately the stimu-
lus 
, which is a single variable, can be estimated from the
mean firing rates of a neuronal population r= �r1 ,r2 , . . . ,rN�.
Through the Cramér-Rao bound, the average squared decod-

ing error for an unbiased estimate of a stimulus, 
̂, is greater
than or equal to 1 / I�
�,

��
 − 
̂�2	 �
1

I�
�
, �24�

where I�
� is the Fisher information. The Fisher information
is given by

I�
� =� drP�r
��−
�2 ln P�r
�

�
2 � , �25�

where P�r 
� is the conditional probability distribution,
which is the probability that a neural response, r, will be
evoked by the presentation of a stimulus 
. We assume that
P�r 
� can be sufficiently approximated with a multivariate
Gaussian probability distribution with a covariance matrix,
Q�
�,

P�r
� =
1

��2��Ndet Q�
�

	exp�−
1

2
�r − f�
��TQ−1�
��r − f�
��� , �26�

where f is the mean value of r. Note that the �i , j�th element
of covariance matrix Qij represents the mean firing rate cor-
relation ��ri�rj	. Under this assumption, the Fisher informa-
tion can be written as �16�

I�
� = Imean�
� + Icov�
� , �27�

Imean�
� = f��
�TQ−1�
�f��
� , �28�

Icov�
� = Tr�Q��
�Q−1�
�Q��
�Q−1�
��/2, �29�

where Tr stands for the trace operation, f��
�=df�
� /d
, and
Q��
�=dQ��
� /d
. Because the mean firing rate correla-
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tions, Qij, can be analytically calculated in the spike response
model �Eq. �23��, the Fisher information can also be analyti-
cally calculated from Eq. �27�.

V. NETWORK MODEL OF ORIENTATION SELECTIVITY
IN PRIMARY VISUAL CORTEX

Let us consider a network consisting of NE=2000 V1 ex-
citatory neurons, NI=2000 V1 inhibitory neurons, and NL
=4000 LGN excitatory neurons as a model of orientation
selectivity. The number of neurons was set so that the mean-
field approximation is valid. If the number of neurons is
enough large to satisfy the mean-field approximation, the
number does not qualitatively affect the results. The diagram
for this network is shown in Fig. 1. Both excitatory neurons
and inhibitory neurons in V1 are selective to the orientation
of bar stimuli in their common receptive field.

We assume that LGN neurons are also orientation selec-
tive and that they project to V1 neurons with the same ori-
entation preference although LGN neurons are usually con-
sidered to be not orientation selective. It is usually assumed
that the receptive fields of LGN neurons are similar to those
of retinal ganglion cells, i.e., they are circular. For instance,
it is assumed that there are two kinds of LGN neurons, i.e.,
ON center-surround cells and OFF center-surround cells. In
the Hubel-Wiesel model of orientation selectivity �17�, the
receptive field structure of V1 neurons is established by sum-
ming the input from appropriately selected LGN neurons.
With this process, the sum of LGN inputs becomes orienta-
tion selective. In the present paper, we ignored this process
of generating orientation selectivity of V1 neurons because
of the computational cost of analytically computing correla-
tions. We simply emulated the sum of LGN inputs by con-
sidering the upstream neurons, which are already orientation
selective. We call these upstream neurons “LGN neurons”
for convenience sake.

The reason we considered the upstream neurons �“LGN
neurons”� is that the input to V1 neurons has to be noisy. If
the input to V1 neurons is noisy, the amount of information

in the V1 layer never exceeds that in the LGN layer because
of the data processing inequality of information theory �18�.
In contrast, if the input to V1 neurons is noiseless, the
amount of information in the V1 layer is not bounded from
above. This is an unrealistic situation. In the present paper,
we simply emulated noisy orientation selective inputs to V1
neurons and did not take into consideration the property of
the receptive fields of real LGN neurons.

Excitatory neurons are divided into KE=20 subpopula-
tions and inhibitory neurons are divided into KI=20 sub-
populations. The choice of the number of subpopulations
does not qualitatively affect the results. All neurons in each
population have the same orientation preference. The number
of excitatory neurons in each population is GE=100, and the
number of inhibitory neurons in each population is GI=100.
The preferred orientations for excitatory neurons in the kth
population are denoted by 
Ek, and those for inhibitory neu-
rons are denoted by 
Ik. We assume that the preferred orien-
tations are evenly distributed from −� /2 to � /2, i.e., 
Ek=
−� /2+k� /KE and 
Ik=−� /2+k� /KI. Neurons in V1 are
connected in an all-to-all manner. The strength of connec-
tions Jkl between a neuron in the kth population and a neuron
in the lth population is a Gaussian function of the difference
in their preferred orientations. The width of this Gaussian is
E=� /10 for excitatory projections and I=� /3 for inhibi-
tory projections. All types of connections we consider in the
V1 network are given by

Jkl = JEE/NE exp�− dif�
Ek,
El�2/E
2� �E → E� , �30�

Jkl = − JEI/NI exp�− dif�
Ek,
Il�2/I
2� �I → E� , �31�

Jkl = JIE/NE exp�− dif�
Ik,
El�2/E
2� �E → I� , �32�

Jkl = − JII/NI exp�− dif�
Ik,
Il�2/I
2� �I → I� , �33�

where dif�
i ,
 j� means that if 
i−
 j�� /2, dif�
i ,
 j�= 
i
−
 j and if 
i−
 j�� /2, dif�
i ,
 j�=�− 
i−
 j. JEE is a pa-
rameter of the overall strength of the excitatory projections
from excitatory neurons to excitatory neurons, and JEI, JIE,
and JII are parameters similar to JEE. We do not consider
feedback connections from V1 to LGN neurons.

LGN excitatory neurons are divided into KL subpopula-
tions. The number of LGN neurons in each population is
GL=100. The total number of LGN neurons is NL=GLKL.
Each population of LGN neurons projects to one correspond-
ing population of V1 excitatory neurons or V1 inhibitory
neurons with the same orientation preference �Fig. 1�. Thus,
the number of subpopulations KL is equal to the sum of sub-
populations in V1 neurons, which is KE+KI. The connections
between LGN neurons in one population and V1 neurons in
the corresponding population are all-to-all connections. The
strengths of connections from LGN neurons to V1 excitatory
neurons and inhibitory neurons are constant and correspond
to JEL /GL and JIL /GL. The population of LGN neurons that
projects to the kth population of excitatory neurons is in-
dexed by Ek and the population of LGN neurons that
projects to the kth population of inhibitory neurons is in-
dexed by Ik. When the orientation of stimuli is �, the input

FIG. 1. Network model of orientation selectivity in primary vi-
sual cortex.
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potential of LGN neurons in the Ekth population, which
project to excitatory neurons in the kth population, is given
by

h���Ek = h0 exp�a�cos�2�
Ek − ��� − 1�� , �34�

where h0 is the strength of the input potential and a controls
the width of the input orientation tuning curve.

Similarly, the input potential of LGN neurons in the Ikth
population is given by

h���Ik = h0 exp�a�cos�2�
Ik − ��� − 1�� . �35�

Note that V1 neurons receive noisy inputs from LGN neu-
rons because LGN neurons stochastically fire according to
the input potential, h���Ek or h���Ik.

VI. EFFECTS OF LATERAL CONNECTIONS ON THE
AMOUNT OF INFORMATION

We shall investigate how lateral connections affect the
amount of information contained in the population activity of
V1 excitatory neurons. We will not discuss the information
contained in the activity of inhibitory neurons because they
do not project out of V1. The network model of orientation
selectivity was described in the previous section. Each
neuron in the network is modeled as the discrete spike
response model �see Sec. II�. The response kernels of the
discrete spike response model are given by �ij���= �1
−exp�−1 /�s��exp�−� /�s�, where �s=2. The absolute refrac-
tory period of the refractory function, ����, which is defined
by Eq. �3�, is �abs=2. The orientation of the stimulus is �
=0. The time window, T, over which mean firing rates are
computed is set to be sufficiently large, i.e., T=1000, to en-
sure that the mean firing rates obey Gaussian statistics. We
verified the analytical computation of the Fisher information
under the Gaussian assumption by empirically estimating the
Fisher information from data sampled from the network
model �see Appendix B for details�. The above parameters
above are fixed in all calculations discussed in this paper.

Here, to visualize the Q of V1 excitatory neurons, let us
introduce a KE	KE matrix, QE, where KE is the number of
subpopulations in V1 excitatory neurons. Because the corre-
lations between two neurons are only determined by the dif-
ference in their preferred orientations, the correlations be-
tween a neuron in the kth population of excitatory neurons
and a neuron in the lth population of excitatory neurons are
the same. Thus, the matrix, Q, can be written as a KE	KE
block matrix. QE is this reduced matrix of Q. The elements
of QE, QE,kl stand for the mean firing rate correlations be-
tween a neuron in the kth population of excitatory neurons
and a neuron in the lth population of excitatory neurons;

QE,kl = Qij, �∀ i in the kth population and ∀ j

in the lth population� . �36�

Note that QE does not contain diagonal elements of Q. We
also introduce a similar KE	KE matrix QE

−1, which consists
of off-diagonal elements of Q−1 of V1 excitatory neurons,

�QE
−1�kl = �Q−1�ij, �∀ i in the kth population

and ∀ j in the lth population� . �37�

We will present QE and QE
−1 as figures instead of matrices, Q

and Q−1.
We consider two kinds of escape function, g�u� in Eq. �1�,

which determine the firing probability. The first is a sigmoid
function, g�u�= �1+tanh��u�� /2. The second is a threshold-
linear function, i.e., g�u�=0 for u�0, g�u�=�u for u�0,
and g�u�=1 for u�1 /�. As explained below, how lateral
connections affect the accuracy of a population code differs
between these escape functions.

A. Case of sigmoid function

First, let us consider the case of the sigmoid function,
g�u�= �1+tanh��u�� /2. The parameters are as follows. � in
the sigmoid function is �=2. The resting potential is ur=
−1.2 in Eq. �2�. In Eqs. �34� and �35�, a, which determines
the width of the tuning curve in LGN neurons, is a=0.4, and
the strength of the input potential is h0=1.5. The Fisher in-
formation in the LGN layer was 1.24	106. Since we did not
change the tuning curve for the LGN neurons, the Fisher
information in the LGN layer was fixed. Note that the Fisher
information in the V1 layer never exceeds that in the LGN
layer because of the data processing inequality of informa-
tion theory �18�. The strength of the excitatory connections
to inhibitory neurons is JIE=20, and the strength of the re-
current inhibitions is JII=5. The strength of connections from
LGN neurons to V1 excitatory neurons is JEL=1.0, and the
strength of connections from LGN neurons to V1 inhibitory
neurons is JIL=1.0. JIE, JII, JEL, and JIL are fixed in the
following calculations. We changed the strength of the recur-
rent excitations, JEE, and the strength of the lateral inhibi-
tions, JEI, and we investigated what effects these had on the
accuracy of a population code.

We shall separately study what effects recurrent excita-
tions and lateral inhibitions had on the Fisher information to
clarify their respective effects. First, let us consider what
effects the recurrent excitations had on the Fisher informa-
tion. As mentioned in Sec. IV, the Fisher information can be
analytically computed by using Eq. �27�. Figure 2�a� shows
the Fisher information when the strength of the recurrent
excitations, JEE, varies. We can see that the Fisher informa-
tion increases as JEE increases. To understand why the recur-
rent excitations increase the Fisher information, let us focus
on the first term of the Fisher information, Imean
= f��
�TQ−1�
�f��
�, because Imean is dominant in our model
�see Figs. 2�a�, 3�a�, 5�a�, and 6�a��. Imean depends on the
derivatives of mean firing rates f� and the inverse of the
covariance matrix Q−1. Because recurrent excitations change
both f� and Q−1, we have to take both changes into consid-
eration.

Now we shall consider how Q−1 affects the Fisher infor-
mation. Figures 2�d� and 2�e� show the off-diagonal elements
of the covariance matrix, Q, and those of the inverse of the
covariance matrix, Q−1, when recurrent excitations are
present. When locally positive correlations are induced by
recurrent excitations �Fig. 2�d��, the off-diagonal elements of
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Q−1 near the diagonal elements are negative �Fig. 2�e��. We
can see from Imean in Eq. �28� that these locally negative
off-diagonal elements decrease the Fisher information if the
tuning curves, f, are fixed. A previous paper �3� has shown
that locally positive correlations decrease the Fisher informa-
tion. Thus, if we only take into account the effects of recur-
rent excitations on correlation structures, recurrent excita-
tions decrease the Fisher information.

Second, let us consider what effects a change in the tuning
curves has on the Fisher information. Figure 2�c� shows the
change in f� caused by recurrent excitations. We can see that
recurrent excitations increase the overall amplitude of f�.
Thus, we can understand from Imean that the changes in the
tuning curves caused by recurrent excitations increase the
Fisher information when correlations are fixed. As a result,
the effects of the derivatives of the tuning curves, f�, on the
Fisher information are opposite to the effects of the correla-
tions. Whether the Fisher information increases or not as a
combinational effect is determined by which effects are
stronger. In this case, the beneficial effects of the derivatives
of the tuning curves on the Fisher information overcome the
adverse effects of correlations and result in increased Fisher
information.

Next, let us consider what effects lateral inhibitions have
on the Fisher information. Figure 3�a� shows the Fisher in-
formation when the strength of the lateral inhibitions, JEI,
varies. In contrast to the case of recurrent excitations, the
lateral inhibitions decrease the Fisher information. Let us
consider why the Fisher information is decreased by the lat-

eral inhibitions from the viewpoint of Imean. Figures 3�d� and
3�e� show the off-diagonal elements of Q and those of Q−1

when lateral inhibitions are present. When locally negative
correlations are induced by lateral inhibitions �Fig. 3�d��, the
off-diagonal elements of Q−1 near the diagonal elements are
positive �Fig. 3�e��. These locally positive off-diagonal ele-
ments increase the Fisher information when the tuning
curves are fixed �3�. Figure 3�c� shows the changes in the
tuning curves caused by lateral inhibitions. We can see that
the overall amplitude of f� is decreased by lateral inhibitions.
Thus, the change in f� caused by lateral inhibitions decreases
the Fisher information. Similar to the case of recurrent exci-
tations, the change in the derivatives of the tuning curves and
correlations have conflicting effects on the Fisher informa-
tion. In this case, the effect of the changes in f� is more
prominent and lead to a decrease in the Fisher information.

Finally, we investigated how excitations and inhibitions
affect the accuracy of a population code as a combinational
effect. Figure 4�a� shows how much the Fisher information
increases or decreases compared with the Fisher information
obtained in the network without lateral connections when the
strength of the recurrent excitations, JEE, and the strength of
the lateral inhibitions, JEI, vary. In the explored parameter
regions in Fig. 4, the so-called marginal phase �12,19�, where
pure recurrent interactions can sustain localized activity with
a tuning width invariant to the stimulus contrast, was not
included. From Fig. 4�a�, we can see that the Fisher informa-
tion increases as JEE increases and the Fisher information
decreases as JEI increases. Figure 4�b� shows how much the
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FIG. 2. �a� Effects of recurrent excitations on Fisher information when the escape function is a sigmoid function. JEI is set to 0. Solid line:
Fisher information I, dashed line: Imean, and dotted line: Icov. ��b� and �c�� Mean firing rates, �b� f, and derivatives of mean firing rates, �c�
f�, of V1 excitatory neurons. Solid lines plot f and f� when JEE=25.0. Dashed lines plot f and f� when there is no recurrent excitation, i.e.,
JEE=0. ��d� and �e�� Grayscale plots of covariance matrix, �d� QE, and inverse of covariance matrix, �e�QE

−1, of V1 excitatory neurons when
JEE=25.0. Note that scales of gray color maps are different in panels �d� and �e�. Diagonal elements were set to 0 to enable visualization.
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FIG. 3. �a� Effects of lateral inhibitions on Fisher information when the escape function is a sigmoid function. JEE is set to 0. Solid line:
Fisher information I, dashed line: Imean, and dotted line: Icov. ��b� and �c�� Mean firing rates, �b� f, and derivatives of mean firing rates, �c�
f�, of V1 excitatory neurons. Solid lines plot f and f� when connection parameters are JEI=15.0. Dashed lines plot f and f� when there is no
lateral inhibition, i.e., JEI=0. ��d� and �e�� Grayscale plots of covariance matrix, �d� QE, and inverse of covariance matrix, �e� QE

−1, of V1
excitatory neurons when JEI=15.0. Diagonal elements are set to 0 to enable visualization. Note that scales of gray color maps are different
in panels �d� and �e�.
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FIG. 4. Sigmoid escape function case. �a� Contour plots of Fisher information when strengths of recurrent connections and lateral
inhibitions, JEE and JEI, varied. Values on contour lines indicate percent increase or decrease in information compared with that obtained for
network without lateral connections �JEE=JEI=0�. �b� Contour plots of tuning curve widths when strengths of recurrent connections and
lateral inhibitions, JEE and JEI, varied. Values on contour lines indicate percent increase or decrease in width compared with that obtained for
network without lateral connections �JEE=JEI=0�. Fitting of tuning curves with a Gaussian function, f = f0 exp�
2 /2�+C, gave  as width
of tuning curves. �c� Classification of parameter regions based on Fisher information and tuning curve widths. Two solid lines are contour
line of Fisher information �panel A� when there was no increase or decrease when strengths of recurrent connections and lateral inhibitions
varied and of tuning curve widths �panel B� when there was no increase or decrease. In region I, Fisher information increases and the tuning
curves get sharper. In region II, the Fisher information decreases and tuning curves get sharper. In region III, Fisher information decreases
and tuning curves get broader. Dashed line indicates point at which peak firing rate of tuning curves does not change, i.e., point at which
excitation and inhibition are balanced. Within parameter regions below dashed line, excitation is dominant. Within parameter regions above
dashed line, inhibition is dominant.
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width of the tuning curves of V1 excitatory neurons is sharp-
ened or broadened by lateral connections. As shown in Fig.
4�b�, the recurrent excitations sharpen the tuning curves and
the lateral inhibitions broaden the tuning curves. However, in
most parameter regions, the tuning curves are sharpened.
Several previous studies found that sharpening of tuning
curves through Mexican-hat type lateral connections leads to
a severe loss in information due to the adverse effects of
correlations induced by lateral connections �5,6�. In contrast,
Fig. 4�c� shows that there is a parameter region where the
Fisher information increases when sharpening occurs �region
I�. In this region, excitation is stronger than inhibition �see
discussion�. In another parameter region �region II�, the
Fisher information decreases when the tuning curves are
sharpened, as was shown in previous studies �5,6�. Parameter
regions where excitatory input and inhibitory input are bal-
anced �20,21� are included in region II. Whether or not the
Fisher information increases is not determined by the width
of the tuning curves but by the complex interplay between
the derivatives of the tuning curves, f�, and the correlations,
Q.

B. Case of threshold-linear function

Next, let us consider the case of a threshold-linear func-
tion, i.e., g�u�=0 for u�0, g�u�=�u for u�0, and g�u�=1
for u�1 /�. The parameters are as follows. � in the linear

function is �=1. The resting potential is ur=0.05. In Eqs.
�34� and �35�, a, which determines the width of the tuning
curve in LGN neurons, is a=1, and the strength of the input
potential is h0=0.1. The Fisher information in the LGN layer
was 6.82	104. The strength of the excitatory connections to
inhibitory neurons is JIE=10, and the strength of the recur-
rent inhibitions is JII=1. The strength of connections from
LGN neurons to V1 excitatory neurons is JEL=0.5, and the
strength of connections from LGN neurons to V1 inhibitory
neurons is JIL=0.5. JIE, JII, JEL, and JIL are fixed in the
following calculations. We changed the strength of the recur-
rent excitations, JEE, and the strength of the lateral inhibi-
tions, JEI, and investigated their effects on the accuracy of
population codes.

As in the case of the sigmoid function, we first separately
investigate what effects recurrent excitations and lateral in-
hibitions had on the Fisher information. Figure 5�a� shows
the Fisher information when the strength of the recurrent
excitations, JEE, varies. In contrast to the case of the sigmoid
function, the recurrent excitations decrease the Fisher infor-
mation. If we compare Figs. 5�b�–5�e� with Figs. 2�b�–2�e�,
we can see that the changes in f� and correlation structures
induced by recurrent excitations are basically the same as for
the sigmoid function. Thus, for the same reason as in the
sigmoid function case, the change in f� increases the Fisher
information and the correlations decrease the Fisher informa-
tion. However, for the threshold-linear function, the adverse
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FIG. 5. �a� Effects of recurrent excitations on Fisher information when the escape function is a threshold-linear function. JEI is set to 0.
Solid line: Fisher information I, dashed line: Imean, and dotted line: Icov. ��b� and �c�� Mean firing rates, �a� f, and derivatives of mean firing
rates, �b� f�, of V1 excitatory neurons. Solid lines plot f and f� when JEE=3.0. Dashed lines plot f and f� when there is no recurrent
excitation, JEE=0. ��d� and �e�� Grayscale plots of covariance matrix, �d� QE, and inverse of covariance matrix, �e� QE

−1, of V1 excitatory
neurons when JEE=3.0. Diagonal elements were set to 0 to enable visualization. Note that scales of gray color maps are different in panels
�d� and �e�.
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effects that correlations have on the Fisher information are
stronger than the beneficial effects caused by the change in
f�. As a result, the recurrent excitations decrease the Fisher
information.

Figure 3�a� shows the Fisher information when the
strength of the lateral inhibitions, JEI, varies. In contrast to
sigmoid functions, lateral inhibitions increase the Fisher in-
formation. As we can see by comparing Figs. 6�b�–6�e� with
Figs. 3�b�–3�e�, the main effects of the change in f� and
correlations on the Fisher information are the same. That is,
correlations increase the Fisher information and the change
in f� decreases the Fisher information. However, for the
threshold-linear function, the beneficial effects of correla-
tions on the Fisher information are stronger than the adverse
effects caused by the change in f�. As a total effect, the
lateral inhibitions increase the Fisher information in this
case.

Finally, we investigated how excitations and inhibitions in
combination affect the accuracy of a population code. Figure
7�a� shows the Fisher information when the strengths of the
recurrent excitations, JEE, and lateral inhibitions, JEI, vary.
As in the sigmoid function case, the so-called marginal phase
�12,19� was not included in the explored parameter regions
shown in Fig. 7. From Fig. 7�a�, we can see that the Fisher
information increases as JEI increases and the Fisher infor-
mation decreases as JEE increases. Figure 7�b� shows the
width of the tuning curves of V1 excitatory neurons when
JEE and JEI vary. Here, the tuning curves become sharper as

JEI increases and become broader as JEE increases. As in the
sigmoid function case, we can also find parameter regions
where the Fisher information increases when sharpening oc-
curs �region I in Fig. 7�c��. In this region, inhibition is stron-
ger than excitation �see discussion�.

VII. DISCUSSION

We described a theoretical framework for investigating
how lateral connections affect the accuracy of a population
code. In our framework, the Fisher information can be ana-
lytically computed in a network of spike response models
�8,14�. Some previous studies, in which the Fisher informa-
tion was computed in realistic network models of spiking
neurons, relied on numerical methods because of the diffi-
culty of computing correlations, that take a substantial
amount of time to calculate �5,6�. Our approach greatly re-
duced this time cost and enabled us to extensively investigate
the various parameters of the network models.

With our framework, we investigated the effects of lateral
connections on population coding in a network model of
orientation selectivity in V1. The Fisher information depends
on both the form of the tuning curves and correlation struc-
tures. Because lateral connections simultaneously change
tuning curves and correlations, we need to take both effects
on the Fisher information into consideration. We found that
the effects conflict with each other in our neuron models.
Whether or not lateral connections increase the Fisher infor-
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FIG. 6. �a� Effects of lateral inhibitions on Fisher information when the escape function is a threshold-linear function. JEE is set to 0.
Solid line: Fisher information I, dashed line: Imean, dotted line: Icov. ��b� and �c�� Mean firing rates, �a� f, and derivatives of mean firing rates,
�b� f�, of V1 excitatory neurons. Solid lines plot f and f� when JEI=1.4. Dashed lines plot f and f� when there is no lateral inhibition, i.e.,
JEI=0. ��d� and �e�� Grayscale plots of covariance matrix, �d� QE, and inverse of covariance matrix, �e� QE

−1, of V1 excitatory neurons when
JEI=1.4. Diagonal elements were set to 0 to enable visualization. Note that scales of gray color maps are different in panels �d� and �e�.

OIZUMI, MIURA, AND OKADA PHYSICAL REVIEW E 81, 051905 �2010�

051905-10



mation strongly depends on the intrinsic properties of a
model neuron, i.e., the escape function. In the present paper,
we considered two simple but typical rate functions �8�.
When the escape function is a sigmoid function, we found
that the recurrent excitations increase the Fisher information
and the lateral inhibitions decrease the Fisher information.
When the escape function is a threshold-linear function, the
opposite situation holds. That is, the recurrent excitations
decrease the Fisher information and the lateral inhibitions
increase the Fisher information. An important implication of
this finding for real neurons is that the effects of recurrent
excitation or inhibition strongly depend on the escape func-
tion, i.e., the neuronal input-output relationship �22–24�. To
clarify how excitation and inhibition affect the accuracy of
the population code in a real nervous system, we need to
consider more realistic neuron models determined by physi-
ological experiments. As it has been reported that the spike
response model can capture the behavior of realistic neurons
by fitting model parameters �8,11�, the theoretical framework
described in this paper provides a promising approach.

Some previous studies reported that sharpening tuning
curves through Mexican-hat connectivities led to a severe
loss of information �5,6�. They emphasized the adverse ef-
fects of correlation structures induced by Mexican-hat con-
nectivities. However, by systematically changing the
strengths of excitations and inhibitions, we found parameter
regions where sharpening of tuning curves via Mexican-hat
connectivities led to an increase in information. Our results
revealed that even if correlation structures induced by
Mexican-hat connectivities negatively affected the accuracy
of population codes, the accuracy of a population code could
be improved when the positive effects of the change in tun-
ing curves overcame the negative effects. In the parameter

regions where the accuracy of the population code was im-
proved, excitation �or inhibition� was relatively stronger than
inhibition �or excitation�. Recent experimental and theoreti-
cal studies have shown that excitation and inhibition are
nearly balanced in V1 �20,21�. In our model, the coding ef-
ficiency decreases as the strength of recurrent connectivities
increases in the parameter regions where excitation and in-
hibition are balanced �Figs. 4 and 7�. Further investigation is
needed to elucidate the coding efficiency of V1 neurons in
realistic parameter regions of recurrent connectivities. This is
left for future work.

In this paper, we considered rate-based Fisher information
under the assumption that the main information carriers in
the brain are firing rates. However, there is a possibility that
the precise spike timing as well as the spike count is used in
the brain for decoding information on stimuli �25�. Compar-
ing the rate-based Fisher information with the spike-based
Fisher information �26�, which is the amount of information
when the individual spike timings of neurons are available, is
an interesting issue that we intend to pursue.
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APPENDIX A: CALCULATION OF CORRELATION
FUNCTIONS

In this appendix, we describe the details of calculating
correlation functions. First, we derive the time-delayed cross
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FIG. 7. Threshold-linear escape function case. �a� Contour plots of Fisher information when strengths of recurrent connections and lateral
inhibitions, JEE and JEI, varied. Values on contour lines indicate percent increase or decrease in Fisher information compared with that
obtained for network without lateral connections �JEE=JEI=0�. �b� Contours plot of tuning curve widths when strengths of recurrent
connections and lateral inhibitions, JEE and JEI, varied. Values on contour lines indicate percent increase or decrease in width compared with
that obtained for network without lateral connections �JEE=JEI=0�. Fitting of tuning curves with a Gaussian function, f = f0 exp�
2 /2�
+C, gave  as width of tuning curves. �c� Classification of parameter regions based on Fisher information and tuning curve widths. Two solid
lines are contour line of Fisher information �panel A� when there was no increase or decrease when strengths of recurrent connections and
lateral inhibitions varied and of tuning curve widths �panel B� when there was no increase or decrease. In region I, Fisher information
increases and tuning curves get sharper. In region II, Fisher information decreases and tuning curves get sharper. In region III, Fisher
information decreases and tuning curves get broader. Dashed line indicates point at which peak firing rate of tuning curves does not change,
i.e., point at which excitation and inhibition are balanced. Within parameter regions below dashed line, excitation is dominant. Within
parameter regions above dashed line, inhibition is dominant.
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correlations at equilibrium, Cij��� �Eq. �20��. By expanding
g�ui� around the noise average of ûi �Eq. �8��, Cij�t , t+��
= ��Si�t�g�uj�t+���	 �Eq. �19�� can be written as

��Si�t�g�uj�t + ���	 = �g��ûj�t + ��	 + � j�tj����Si�t�	

+ �
��=1

�

�
k�j

N

Jjk� jk�����g���ûj�t + ��	

+ � j�tj����Si�t��Sk�t + � − ���	 , �A1�

where tj�= t+�− tj
�f�, and we ignore terms of higher order than

1 /N. Taking the average for the refractory function � j�tj��
and Si�t�, the first term in Eq. �A1� can be computed as

�g��ûj�t + ��	 + � j�tj����Si�t�	

= �
tj�=1

�

�
Si�t�

P�tj�,Si�t��g��ûj�t + ��	 + � j�tj����Si�t�

=g��ûj�t + ��	� �
tj�=�abs+1

�

�
Si�t�

P�tj�,Si�t���Si�t�

=g��ûj�t + ��	��
Si�t�
�P�Si�t�� − �

tj�=1

�abs

P�tj�,Si�t����Si�t�

=− g��ûj�t + ��	��
Si�t�

�
tj�=1

�abs

P�Sj�t + � − tj�� = 1,Si�t���Si�t�

=− g��ûj�t + ��	��
tj�=1

�abs

Cij�t,t + � − tj�� , �A2�

where P�tj�� is the probability that the last spike of neuron j
occurred at t+�− tj�, that is, P�tj��= P�Sj�t+�− tj��=1,Sj�t+�
− tj�+1�=0, . . . ,Sj�t+�−1�=0�. In the above calculation, we
used the property of the absolute refractory period that when
tj���abs, the joint probability P�tj� ,Si�t�� can be simply writ-
ten as P�Sj�t+�− tj��=1,Si�t��.

Similarly, taking the average for � j�tj��, Si�t�, and Sk�t+�
−���, the second term in Eq. �A1� can be computed as

�g���ûj�t + ��	 + � j�tj����Si�t��Sk�t + � − ���	

= �
tj�=1

�

�
Si,Sk

P�tj�,Si�t�,Sk�t + � − 1��g���ûj�t + ��	

+ � j�tj����Si�t��Sk�t + � − ���

=g���ûj�t + ��	� �
Si,Sk
�P�Si�t�,Sk�t + � − ����

− �
tj�=1

�abs

P�tj�,Si�t�,Sk�t + � − ������Si�t��Sk�t + � − ���

=g���ûj�t + ��	��Cik�t,t + � − ��� − Cik�t,t + �

− ����
tj�=1

�sbs

�Sj�t + � − tj��	� , �A3�

where we assume that i�k and ignore the three-point cross
correlations, ��Si�t��Sj�t+�− tj���Sk�t+�−���	, because these
are order of 1 /N3/2. When i=k, we replace the cross correla-
tion, Cik�t , t+�−���, in Eq. �A3� with the autocorrelation,
Ai�t , t+�−���. Substituting Eqs. �A2� and �A3� into Eq. �A1�,
we obtain the dynamics of the time-delayed cross correla-
tions,

Cij�t,t + �� = − g��ûj�t + ��	��
tj�=1

�abs

Cij�t,t + � − tj��

+ �1 − �
tj�=1

�abs

�Sj�t + � − tj��	�g���ûj�t

+ ��	��
��

�

� �
k�j,i

Jjk� jk����Cik�t,t + � − ���

+ JjiAi�t,t + � − ���� . �A4�

Taking the limit t→� in Eq. �A4�, we obtain the time-
delayed cross correlations at equilibrium �Eq. �20��.

In the same way as we derive the time-delayed cross cor-
relations, we can obtain the dynamics of the equal-time
cross-correlation functions, Cij�t , t�,

Cij�t,t� = g��ûi�t�	�g��ûj�t�	��
ti�=1

�abs

�
tj�=1

�abs

Cij�t − ti�,t − tj��

+ g���ûi�t�	�g��ûj�t�	��− 1 + �
ti�=1

�abs

�Si�t − ti��	� ,

�
tj�=1

�abs

�
�

�

� �
k�i,j

Jik�ik���Ckj�t − �,t − tj��

+ Jij�ij���Aj�t − �,t − tj��� + g���ûj�t�	�g��ûi�t�	�

	�− 1 + �
tj�=1

�abs

�Sj�t − tj��	� ,

�
ti�=1

�abs

�
�

�

� �
k�i,j

Jjk� jk���Cki�t − �,t − ti��

+ Jji� ji���Ai�t − �,t − ti��� + g���ûi�t�	�g���ûj�t�	�

	�1 − �
ti�=1

�abs

�Si�t − ti��	��1 − �
tj�=1

�abs

�Sj�t − tj��	� ,
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��
�,��

�

�
k�i

�
l�j,k

Jik�ik���Jjl� jl����Ckl�t − �,t − ���

+ �
�,��

�

�
k�i

Jik�ik���Jjk� jk����Ak�t − �,t − ���� , �A5�

where we ignore terms of higher order than 1 /N. By taking
the limit t→� in Eq. �A5�, we obtain the equal-time cross
correlations at equilibrium �Eq. �17��.

APPENDIX B: EMPIRICAL ESTIMATES OF FISHER
INFORMATION

We checked whether the analytically computed Fisher in-
formation was consistent with empirical estimates of Fisher
information from data sampled from the network model, as
was done in previous studies �6,27�. To estimate the Fisher
information, we train a linear decoder

�̂ = wr + b , �B1�

where w is a weight vector, b is a scalar, and r is the firing
rate of the V1 excitatory neurons. w and b are optimized for
two values of orientation �1 and �2 which differ by a small
angle �
. Training is done by using the conjugate gradient
method �27�. Once training is completed, an estimate of
Fisher information can be computed by the following equa-
tion:

ILOLE =
����̂2	 − ��̂1	�/���2

�
�̂2

2
+ 

�̂1

2 �/2
, �B2�

where ��=�2−�1, ��i	 is the mean, and �i
�i=1,2� is the

variance of the estimates on test data �see �6� for details�.
ILOLE provides an estimate of the fist term of the Fisher in-
formation in Eq. �27�, Imean, because Imean gives an upper
bound on the decoding error of the optimal linear estimator
of the stimulus 
 �28,29�. Imean is called linear Fisher infor-
mation.

Before we applied the above method of estimating the
Fisher information to data sampled from our network model,
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FIG. 8. Mean firing rates and correlation functions obtained
from simulations �dots� compared with theory �solid line�. The
mean firing rates and correlation functions are estimated from the
simulations over 108 time steps. Parameters of connections are
JEE=20.0, JEI=5.0, JIE=20.0, and JII=5.0. �a� Mean firing rates of
the V1 excitatory neurons. �b� Autocorrelation function Ai��� of the
V1 excitatory neuron with preferred orientation 0 rad. �c� Cross-
correlation function Cij��� between a V1 excitatory neuron with
preferred orientation −� /20 rad and a V1 excitatory neuron with
preferred orientation 0 rad. �d� The mean firing rate correlations
QE,ij between a V1 excitatory neuron with preferred orientation 0
rad and V1 excitatory neurons with preferred orientations from
−� /2 to 9� /20.
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FIG. 9. Empirical estimates of Fisher information by using ILOLE when the number of trials used for the estimation varies. The number
of neurons is 1000 in panel �a�, 20 in panel �b�, and 20 in panel �c�. In panels �a� and �b�, data sampled from the Gaussian distribution �Eq.
�B3�� are used. In panel �c�, data obtained by simulating our network model are used. Dots represent the mean of ILOLE and the error bars
represent the standard deviation of ILOLE. The horizontal solid line shows the actual value of the Fisher information.
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we examined how much data are needed to accurately esti-
mate the Fisher information in simple toy examples. We con-
sidered N neurons whose firing rates obey Gaussian statis-
tics. The firing rates of the neurons responding to stimulus �
are

ri = f0 exp�a�cos�2�
i − ����� + �i, �B3�

where 
i=−� /2+ i� /N and �i are independent Gaussian ran-
dom variables with zero mean and variance 2. We generated
M trials for both orientations �1=0 and �2=0.01. Half of
those trials were used for training and the other half of trials
were used for evaluating the mean and the variance of the
estimates of the orientations. The parameter values are f0

=20, a=0.23, and =0.1. The number of neurons was N
=1000. We computed ILOLE ten times and evaluated the mean
and the standard deviation of ILOLE. Figure 9�a� shows the
mean and the standard deviation of ILOLE when the number
of trials M varies. From Fig. 9�a�, we can see that the Fisher
information would be largely underestimated if the number
of trials was not much larger than the number of neurons N.
When we used 2000 trials, the Fisher information was un-
derestimated by about 50%. We needed more than 10 000
trials to obtain 90% of the actual Fisher information. Noting
the amount of data needed for the accurate estimation shown
in Fig. 9�a�, we can say that a relatively small number of
trials were used to estimate the Fisher information in some of
the previous studies �6,27�. In our network model, we have
2000 V1 excitatory neurons. Thus, it is hard to accurately
estimate the Fisher information contained in all V1 excita-
tory neurons with ILOLE. Instead of computing the Fisher
information from all V1 excitatory neurons, we considered
computing it from 20 selected ones. We chose one neuron
from each subpopulation and gathered KE=20 of them,
where KE is number of subpopulations �see Sec. V for details
of the network architecture�.

We considered a case in which a sigmoid function is used
for the escape function g�u�. The model parameters are
shown in Fig. 8. Note that we did not change the total num-
ber of neurons in the network model; we only changed the
number of neurons from which we computed the Fisher in-
formation. In this case, the analytically computed linear
Fisher information in 20 selected excitatory neurons is
Imean=209. We generated 10 000 trials for two orientations
�1=0 and �2=0.01 by simulating our network model.
10 000 trials gave us a good estimate of the Fisher informa-
tion when the number of neuron was 20, judging from the
same test in the simple toy example described above �Fig.
9�b��. We randomly chose one neuron from each subpopula-
tion consisting of GE=100 neurons with the same orientation
preference and computed ILOLE from the data of the 20 ex-
citatory neurons. We randomly chose 20 neurons 1000 times
and computed ILOLE in those 1000 different populations of
neurons. Figure 9�c� plots the mean and standard deviation
of ILOLE when the number of trials varies. When the number

of trials is 10 000, the mean of ILOLE was �ILOLE	=208 and
the standard deviation was ILOLE

=6.51. We thus could say
that the empirical estimate of Fisher information was consis-
tent with the analytically computed Fisher information.

APPENDIX C

Table of parameters �Tables I–III�.

TABLE I. Neuron parameters.

u Membrane potential

ur Resting potential

�s Time constant of postsynaptic potential

�abs Absolute refractory period

TABLE II. Tuning curve parameters.

h0 Input potential of LGN neurons

� Orientation of stimulus

a Width of tuning curves in LGN neurons

TABLE III. Network parameters.

E Range of excitation in V1

I Range of inhibition in V1

JEL

Strength of synaptic connections from LGN
neurons to V1 excitatory neurons

JIL

Strength of synaptic connections from LGN
neurons to V1 inhibitory neurons

JEE

Strength of synaptic connections from V1
excitatory neurons to V1 excitatory neurons

JEI

Strength of synaptic connections from V1
inhibitory neurons to V1 excitatory neurons

JIE

Strength of synaptic connections from V1
excitatory neurons to V1 inhibitory neurons

JII

Strength of synaptic connections from V1
inhibitory neurons to V1 inhibitory neurons
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